PROVA SCRITTA di SISTEMI ELETTRONICI AUTOMATICI

Prof. Luca Salvini

5Ae	Nome	08/11/2010
0110		00/11/2010

Obiettivi oggetto di verifica di questa prova scritta:

Ob1. conoscere il paradigma di un sistema di controllo ad anello chiuso

Ob2. saper ridurre a reazione unitaria

Ob3. saper classificare il tipo di sistema in base all'errore

Ob6. saper trasportare le equazioni dal dominio del tempo a quello di Laplace

Ob7. saper rappresentare un sistema di controllo mediante schema a blocchi

Ob8. saper determinare la f.d.t. ad anello chiuso

Esercizio 1:

Considera un sistema termico costituito da uno scaldatore e da un liquido che viene riscaldato. Questo sistema rappresenta il cosiddetto "processo". Si vuole realizzare un controllo automatico (di tipo proporzionale) della temperatura del liquido (acqua distillata). La temperatura di riferimento Trif è 80°C. In particolare:

- 1.1. disegna un possibile schema a blocchi per il sistema di controllo nel suo complesso, indicando i principali blocchi nel ramo diretto, gli ingressi e le uscite, secondo il **paradigma** del controllo ad anello **chiuso**;
- 1.2. spiega il significato di **processo** e la differenza tra processo e **controllo**;
- 1.3. individua un **modello a blocchi dettagliato** per **il blocco "scaldatore"**, scrivendone le equazioni che ne regolano il funzionamento nel dominio del tempo e "trasportandole" nel dominio di Laplace.
- 1.4. Rappresenta graficamente l'andamento atteso per la temperatura del liquido in funzione del tempo, secondo quanto hai misurato sperimentalmente e/o con la simulazione.

Esercizio 2:

Con riferimento ad un sistema di controllo analogico ad anello chiuso, completa la tabella seguente indicando il **tipo** e l'**ordine** del sistema. Determina (con i passaggi matematici necessari) la funzione di **anello chiuso** W_{CL} per ciascuna delle funzioni di anello aperto G_{OL} assegnate.

Indica la parte della funzione del ramo diretto (G'_{OL}) indipendente dai poli nell'origine e determina numericamente il guadagno statico G_{st} del ramo diretto. Nella tabella H rappresenta la reazione.

N.	G_{OL}	Н	Tipo	ordine	\mathbf{W}_{CL}	G'ol	G_{St}
2.1	3	2					
	$(s^2+0.5\cdot s)$						
2.2	2	1					
	$\overline{(s^2+3s+2)}$						
2.3	_ 5	3					
	$\overline{(s^3+4s^2)}$						