PROVA SCRITTA di SISTEMI ELETTRONICI AUTOMATICI

Prof. Luca Salvini

5Be Nome 26/11/

Obiettivi oggetto di verifica di questa prova scritta:

Ob1. conoscere il paradigma di un sistema di controllo ad anello chiuso

Ob2. saper ridurre a reazione unitaria

Ob3. saper classificare il tipo di sistema in base all'errore

Ob6. saper trasportare le equazioni dal dominio del tempo a quello di Laplace

saper rappresentare un sistema di controllo mediante schema a blocchi

Ob8. saper determinare la f.d.t. ad anello chiuso

Ob7.

Esercizio 1:

Considera un sistema termico costituito da uno scaldatore e da un liquido che viene riscaldato. Si deve realizzare un controllo automatico (di tipo proporzionale) della temperatura del liquido (acqua distillata). La temperatura di riferimento Trif è 65°C. In particolare:

- 1.1. disegna un possibile schema a blocchi per il sistema di controllo nel suo complesso, indicando i principali blocchi, gli ingressi e le uscite, secondo il **paradigma** del controllo ad anello **chiuso**;
- 1.2. individua un **modello a blocchi dettagliato** per **il blocco "scaldatore"**, scrivendone le equazioni che ne regolano il funzionamento nel dominio del tempo;
- 1.3. riscrivi le equazioni del precedente punto nel dominio di Laplace.

Esercizio 2:

Completa la tabella seguente determinando la funzione di anello chiuso ed indicando se il sistema di anello aperto e di anello chiuso sono stabili o meno. Nella tabella WOL rappresenta la funzione di trasferimento di anello aperto, WCL la funzione di anello chiuso.

N.	\mathbf{W}_{OL}	Н	\mathbf{W}_{CL}	Stabilità Wol	Stabilità W _{CL}
2.1	$\frac{8}{(s+1)}$	2			
2.2	$\frac{3}{(s^2+3s-4)}$	1			
2.3	$\frac{4}{(s-15)}$	4			

2.4 Riduci a reazione unitaria il sistema della prima riga (2.1), disegnando lo schema a blocchi del sistema di controllo prima e dopo la riduzione del sistema a reazione unitaria.

Esercizio 3:

Un sistema di controllo è caratterizzato da una fdt di anello aperto $W_{OL} = \frac{2}{s*(s+1)}$; il sistema è chiuso in reazione unitaria.

3.1 Il sistema viene eccitato prima a gradino e poi a rampa; quanto vale l'errore a regime nei due casi? Perché?